| Четверг, 10 сентября 15:30 - 16:30 Флагман 3 | Сессия: Математика и физика 2Математика и физика | 
| Председатель: к.ф.-м.н. Соболевский Андрей Николаевич | 
Степанян К.В., Миллер Б.М., Миллер А.Б., Попов А.Н.
Разработка численной процедуры для контроля соединенных цепей Маркова
 
   				Аннотация: 			The system of controlled time-inhomogeneous Markov chains (MC) is considered. The principal                 problem is the ``curse of dimension'' which appears here as the necessity of solving the system of                 ordinary differential equations of high dimension. Moreover, even the development of the system itself                 is a serious issue since these equations are linked and the standard parallelization approach developed                 in existing software packages are not very effective. Meanwhile, one can observe that the minimization                 procedure needed for the right hand side of this system may be easily parallelized since for each                 equation the minimization procedure may be realized independently. As an example we consider the                 management of linked dams under seasonal random inflows/outflows and customers' demands. The current                 state of each dam is the state of continuous-time Markov chain corresponding to the water level. So the                 state of the dams system is represented in tensor form. The connection of Markov chains is due to the                 controlled flow between dams. The aim of the control is to keep balance under the natural perturbation                 and at the same time to satisfy the customers' demands. The general approach to the solution is based on                 the dynamic programming method which leads to the solution of Bellman type equation in tensor form. This                 equation may be reduced to the system of ordinary differential equations. Here we suggested the                 automatic procedure of this system generation and an approach to the minimization which may be realized                 for each state independently.             
 Крошнин А.
Сходимость барицентров для метрики Монжа-Канторовича в одномерном случае с выпуклой ценовой функцией
 
   				Аннотация: 			В статье рассмотрена задача Монжа-Канторовича в одномерном случае с выпуклой ценовой функцией. Найден явный вид ее решения. Найден явный вид барицентра конечного набора мер. Для пространства мер с компактным носителем и метрикой Монжа-Канторовича определен барицентр распределения и найдена явная формула для него. Также доказан аналог ЗБЧ для пространства мер с компактным носителем.
 











