
Getting traffic statistics from network devices in an
SDN environment using OpenFlow

 Abstract—Software Defined Networking
(SDN) provides a significant advantage because
it is easier to tune up and introduce new
functionalities. Although there are previous
work focusing on the problem of network
management, monitoring and control to improve
the QoS seen by the customers, only some supply
solutions for measuring network performance,
e.g., latency, throughput, and packet loss. In this
study we introduce how to get traffic
measurement statistics from network devices in
an SDN environment. In terms of network
monitoring, OpenFlow allows to build a
monitoring solution adjusted to the specific
network needs. We demonstrate how to use
OpenFlow features to get traffic statistics from
network devices. In our test environment,
collected traffic statistics are used to calculate
the available bandwidth on each link in the
network. We analyse the effect of statistics
collection frequency on the network load and the
accuracy of the results collected.

Keywords— SDN/OpenFlow1.3, Floodlight
controller, Mininet, CPqD Switch, and Network
virtualization.

I. INTRODUCTION
Generally, it is difficult to experiment with new

ideas in actual networks because new ideas often
include nonstandard aspects. It is difficult to
incorporate these changes into an existing network
since the devices in traditional networks do not
allow changes to be made in their software systems.

Software Defined Networking (SDN) separates
the control plane from the data plane. Control plane
functionalities are handled by an entity called
controller which can be centralized or distributed.
Controller communicates with network devices to
collect information from them and also to push
configuration information to them. One controller
can manage many network devices in the network.

Controller receives the information from all
switches in the network and based on the received
information, a controller can build the network
topology. Then switches receive flow table from the
controller to operate properly based on the flow
table. If a switch receives a packet from a flow
which does not have a matching entry in the flow
table, then the switch transmits the packet to the
controller. After receiving it, based on the packet
information, the controller generates a forwarding
rule and then sends the forwarding rule to the
switch. A controller can add, update, and delete flow
entries in flow tables, both reactively and
proactively.

In SDN terminology communication that occurs
between controller and network devices is called
southbound communication. One mechanism that
allows the control plane to communicate with
networking devices is OpenFlow. OpenFlow is an
open source framework created in 2008 at Stanford
University and from 2011 developed within the
Open Networking Foundation (ONF). Its aim is to
"open" the control of network nodes to allow the
separation of forwarding plane and control plane.

OpenFlow standard has different versions. In this
study we focused on OpenFlow 1.3 to investigate
the use of metering and measurement functionalities.
OpenFlow 1.3 introduces new features for
monitoring and operations and management (OAM).
To that end, the meter table is added to the switch
architecture. Figure 1 shows the structure of meter
table entries. A meter is directly attached to a flow
table entry by its meter identifier and measures the
rate of packets assigned to it. A meter band may be
used to rate-limit the associated packet or data rate
by dropping packets when a specified rate is
exceeded. Instead of dropping packets, a meter band
may optionally recolour such packets by modifying
their differentiated services (DS) field. Thus, simple
or complex QoS frameworks can be implemented
with OpenFlow 1.3 and later specifications.

Diyar Jamal Hamad , Khirota Gorgees Yalda, and Ibrahim Tanner Okumus

951

Figure 1: Meter table entry.

In this study, we examine the traffic statistics
collection features of OpenFlow protocol. Using the
provided features we calculate the actual link
utilizations and available link capacities in different
time granularities in a test environment. Using the
results, we analyse the effect of statistics collection
frequency on the network load and the accuracy of
the results. Collecting bandwidth measurement
statistics on switches offers bandwidth assurance for
designated traffic [1]. Based on the traffic unit,
bandwidth provisioning can be at different
granularity levels [2]. Port-level bandwidth
provisioning assures bandwidth for the traffic from
an input port to an output port.

II. RELATED WORK
The OpenFlow protocol provides functions to

query switches for the number of packets or bytes in
flows matching a specific rule or passing a specific
port. Prior work relies on this capability to compute
utilization in the network [3]. OpenTM measures
networks-wide traffic matrix by periodically polling
one switch on each flow’s path and then combining
the measurements. Polling a single switch does not
impose material load on the network but may affect
accuracy if the switch is not carefully chosen.

Jose et al [4] detect heavy hitters by continually
adapting polling rules to focus on the flows that are
more likely to have high volume. Both approaches
have to carefully schedule measurements to limit the
polling overhead. The authors in [5] showed that
centralized controller architecture will interrupt
network traffic and flow requests in case of
controller failure. Specifically, they proposed a
distributed architecture SiBF, which consists of an
army of rack managers (RMs), one per rack, acting
as controllers. Consequently, when the master
controller fails, flow requests are handled by another
standby controller (RM) until the master controller
comes back up. In case of switch failure, SiBF
installs new mappings (new back-up flow entries) in
the ToR switches for each active entry.

sFlow [6] works similarly and has the advantage
to let the agents “push” their counters. This means
that fewer packets are needed to obtain the relevant
data as there is no request. An sFlow traffic analyser
is still needed to collect the data and an agent must
be put in every switch.

Other initiatives such as OpenSAFE uses traffic
duplication to monitor the network adding a very

high overhead while FlowSense[7] uses a push
mechanism to analyse link utilization passively.

The authors in [9] implement OpenNetMon to
monitor latency, throughput and packet loss in
OpenFlow networks. This application allows
determining online whether the end-to-end QoS
parameters are satisfactory. Then, the application
sends the data relative to throughput, delay and
packet loss to the controllers for Traffic Engineering
(TE) purposes. The throughput and packet loss are
obtained from polling flow source and destination
switches.

III. MONITORING IN SDN
Traditionally, many different monitoring

techniques are used in computer networks. Every
measurement technique requires a separate hardware
installation or software configuration, making it a
tedious and expensive task to implement. However,
OpenFlow provides necessary interfaces to
implement most of the discussed methods without
the need of customization.

By using some of the OpenFlow protocol
messages described in the OpenFlow specification
[8], statistics collection can be achieved and
calculations can be made on the collected data for
specific purposes such as delay estimation etc. The
two types of messages that are provided by
OpenFlow are:

• STATISTICS REQUEST: Message sent
from the controller to a switch
requesting its current set of statistics
for flows, ports, etc.

• STATISTICS REPLY: Message sent from a
switch to the controller, in reply to a
request message.

Network measurement methods are generally
divided into two classes: passive and active
methods. Passive measurement methods measure
network traffic by monitoring traffic for specific
message types to infer measurement values. The
advantage of passive measurements is that they do
not generate additional network overhead, and thus
do not influence network performance.
Unfortunately, passive measurements rely on
installing in-network traffic monitors, which is not
feasible for all networks and require large
investments. Active measurements on the other hand
inject additional packets into the network,
monitoring their behaviour. For example, the
popular application ping uses ICMP packets to
reliably determine end-to-end connection status and
compute a paths round-trip time [10].

952

Both active and passive measurement schemes
are useful to monitor network traffic and to collect
statistics. However, one needs to carefully decide
which type of measurement to use. For instance
active measurements introduce additional network
load affecting the network and therefore influence
the accuracy of the measurements themselves.

Often network measurements are performed on
different layers. Measurements on the application
layer are preferred to accurately measure application
performance. Network layer measurements use
infrastructure components (such as routers and
switches) to obtain statistics. This approach is not
considered sufficient for some as the measurement
granularity is often limited to port based counters. It
lacks the ability to differ between different
applications and traffic flows.

The Simple Network Management Protocol
(SNMP) is one of the most used protocols to
monitor network status. Among others, SNMP can
be used to request per-interface port-counters and
overall node statistics from a switch. Being
developed in 1988, it is implemented in most
network devices.

In this study our goal to get actual network usage
information that can be used in different parts of the
network management layer to provision the network
online. Thus our aim is to get raw link usage
information from the network devices independent
of the application layer details. For each link on the
network, we collect actual link usage in terms of
number of bytes. We use this information to
calculate near real-time available bandwidth on each
link. This information will help us with deploying
custom routing protocols, provision the network,
load-balancing, and quality of service purposes.

IV. TEST ENVIRONMENT AND EVALUATION
RESULTS

In our test environment we used different
components to create an SDN network. Figure 2
shows the sample topology used in our tests.

We used mininet to create SDN capable test
topology. Mininet [11] is an open source network
simulator for modelling software defined networks.
One of OpenFlow soft switch is cPqD [12]. The
CPqD switch is a version of the Stanford Reference
Implementation which has been updated to support
OpenFlow 1.3. CPqD supports groups and meters.
CPqD switch was written in Linux. It's implemented
in operating system's user space. This approach
gives a lot of flexibility and allows quick
development and testing of new OpenFlow features.

OpenFlow Softswitch supports OpenFlow 1.3 and
multiple controller & redundancy.

The OpenFlow network controller used in the
experiment is Floodlight. Many SDN controllers
have been developed since the introduction of SDN
[13]. However, one of the most widespread
controllers is Floodlight. Floodlight is Java-based
open source software based on the Beacon controller
implementation developed at the Stanford
University that works with physical and virtual
OpenFlow switches. The last release of Floodlight is
the version 1.1.

In order to evaluate the suggested methods, one
or multiple UDP flows are created between H1
towards H3 with data rate of 5 Mbps, through the
testbed. The experimental evaluation aims to prove
the system's accuracy and analyse the overhead of
the method used.

Figure 2: Evaluation Topology
In the OpenFlow switch specifications [14] it is

stated that switches have to keep counters for port,
flow table/entry, queue, group, group bucket, meter
and meter band. Table 1 presents the Per Flow Entry
counters used in this paper. Furthermore, in order to
follow the statistics for more than one flow, there is
an option to bundle multiple flows in a group and
observe their aggregated statistics.

Counter Description
Received Packets Counts the number of

packets
Received Bytes Counts the number of

bytes
Duration(seconds) Indicates the time the

flow has been installed
on the switch in seconds

Duration(nanoseconds) Counts time the flow has
been alive beyond the
seconds in the above
counter

Table 1. Counters [14].

We retrieve the available bandwidth related to a
specific link by means of a number of packets
passed through the switch port connected to it.

953

Specifically, a number of bytes transmitted or
received from/to a port are related to the low-level
data transmission (i.e., throughput, not the goodput).
Our architecture allows us to continuously sample,
for each switch port, the transmitted or received
bytes with a specific frequency. Hence, comparing
the retrieved values in two different instants, it is
possible to approximately know the bandwidth
usage of the link connected to that port.

Both the OpenFlow switch and the OpenFlow
controller must accept any OpenFlow message types
and sub-types on all connections. The main
connection or an auxiliary connection cannot be
restricted to a specific message type or sub-type.
However, the processing performance of different
message types or sub-types on different connections
may be different.

OpenFlow 1.3 supports meters. It is possible to
set multiple meter bands per meter and submit it to
switch. In Floodlight controller, this can be achieved
by using IOFSwitchListener specifically in
switchAdded class that’s included in
IOFSwitchListener interface. When the MeterMod
including MeterBand is set, ofsoftswitch(CPqD)
needs to be used because currently only this
softswitch is supporting Meters in OpenFlow v1.3.
After setting the meters to switches, flows need to be
assigned to meters so that meters can identify which
packets are intended for that meter. In order to get
switch statistics, controller sends an
OFMeterStatsRequest to relevant switch with meter
identification included and the switch will reply with
OFMeterStatsReply its statistics. One of the items
received in the statistics will be the total received
bytes matched by each flow. Let's assume at time t1
statistics information is received and the total
received byte count is Bt1. If this process is repeated
periodically it is possible to calculate the utilized
bandwidth for that specific meter. After a period (P)
another OFMeterStatsRequest is sent and the
recived byte count is Bt2. This time received byte
count should be larger than the previous number
(ignoring count overflows). Utilized bandwidth
(UB) in bits per second can be calculated as:

UB = [(Bt2 - Bt1) / P] * [8 bits]
UB is the bandwidth consumed by this flow on

the corresponding meter. On the controller a thread
can be set to repeat the process on defined periods to
give us an average bandwidth consumption of that
flow over the time period we chose.

OpenFlow ports are the network interfaces for
transit packets between OpenFlow processing and
the rest of the network. OpenFlow switches connect

logically to each other by their OpenFlow ports. An
OpenFlow switch has a number of OpenFlow ports
available for OpenFlow processing. The set of
OpenFlow ports may not be identical to the set of
network interfaces submitted by the switch
hardware. Some network interfaces may be not
enabled for OpenFlow, and the OpenFlow switch
may define extra OpenFlow ports.

As ports are added, modified, and removed from
the datapath, the controller needs to be informed
with the OFPT_PORT_STATS request message.

The switch and controller can verify proper
connectivity through OpenFlow protocol with echo
request (OFPT_ECHO_REQUEST) and reply
(OFPT_ECHO_REPLY) messages [15]. The body
of the message consist of uninterpreted data that is
to be echoed back to the requester. The requester
matches the reply with the transaction id from the
OpenFlow header.

In order to get switch statistics OpenFlow
provides port level functionalities. Using the defined
methods, it is possible to get detailed statistics of a
specific port on a selected switch. When a switch
receives an "OFPortStatsRequest" message it
generates a response, which is the
"OFPortStatsReply" message. This message
contains the information obtained from the switch
counters [14]. On flow level it gives the duration of
the flow (in nanoseconds), packet and byte count.
Port statistics give more information about the state
(both transmitted and received) such as number of
dropped packets, bytes, errors and collisions. The
controller obtains information for every flow that
follows the same path. Per-flow port byte is
calculated by subtracting the increase of the
OpenFlow port bytes counter of the source switch
with that of the destination switch [16].

Port statistics provide raw utilization data on each
link. OFPortStatsReply messages contain received
byte count along with other statistics data. Received
byte information can be used to calculate link
utilization. Formula 1 provided above for meters can
be used again for the same purpose. Periodically
polling switches will provide necessary information
to calculate link utilization. Granularity of the
polling period can be changed to get more timely
results in time-critical network management
functionalities. This information can be used for
traffic engineering practices.

On the test topology shown in Figure 2, traffic is
generated between two hosts host1 (H1) and host3
(H3). To test the accuracy and the performance
different flow durations are used. Generated flows

954

are chosen as UDP flows to ensure the stable bit rate
on the link. Each UDP flow is adjusted to have
5Mbps of traffic. First flow was active for 60
seconds second flow 300 seconds and third flow 600
seconds. As the flow duration increased, number of
polls also increased and that information is used to
analyse the extra load injected into the network for
statistics collection.

Information about ports statistics is requested
with the OFPMP_PORT_STATS multipart request
type (sizeof(struct ofp_port_stats_request) == 8.)
The port_no field optionally filters the stats request
to the given port. To request all port statistics,
port_no must be set to OFPP_ANY (sizeof(struct
ofp_port_stats) == 112).

The duration_sec and duration_nsec fields
indicate the elapsed time the port has been
configured into the OpenFlow pipeline. The total
duration in nanoseconds can be computed as
durationsec_109 + duration nsec. Implementations
are required to provide second precision; higher
precision is encouraged where available.

The port description request
OFPMP_PORT_DESCRIPTION enables the
controller to get a description of all the ports in the
system that supports OpenFlow. The request body is
empty. The reply body consists of an array of the
following:

/* Description of a port */
struct ofp_port {
uint32_t port_no;
uint8_t pad[4];
uint8_t hw_addr[OFP_ETH_ALEN];
uint8_t pad2[2]; /* Align to 64 bits. */
char name[OFP_MAX_PORT_NAME_LEN]; /*

Null-terminated */
uint32_t config; /* Bitmap of OFPPC_* flags. */
uint32_t state; /* Bitmap of OFPPS_* flags. */
/* Bitmaps of OFPPF_* that describe features.

All bits zeroed if
* unsupported or unavailable. */
uint32_t curr; /* Current features. */
uint32_t advertised; /* Features being advertised

by the port. */
uint32_t supported; /* Features supported by the

port. */
uint32_t peer; /* Features advertised by peer. */
uint32_t curr_speed; /* Current port bitrate in

kbps. */

uint32_t max_speed; /* Max port bitrate in kbps
*/

};
sizeof(struct ofp_port) == 64.
When we generated traffic between H1 and H3 in

our topology by using Iperf commands [17], the
message size of Port Statistics Request in wireshark
is 86 Kb and the Reply is 390 Kb.

Figure 3, represent utilized bandwidth for each
interswitch port between Switches with 5Mb traffic
and 60 sec.

Figure 3: Traffic Monitoring for one minute

Figure 4, represent utilized bandwidth for each
port between Switches with 5Mb traffic and 300 sec.

Figure 4: Traffic Monitoring for 5 minutes

Figure 5, represent Utilized bandwidth for each
port between Switches with 5Mb traffic and 600 sec.

Figure 5: Traffic Monitoring for 10 minutes

955

Figures show that the port statistics collected
from switches using OpenFlow messages follow the
generated traffic rate closely. The rate received from
ports is a little bit higher than the generated traffic.
The reason for that is apart from generated traffic,
there is background traffic such as control traffic in
the network.

V. CONCLUSION
Most published OpenFlow/SDN use cases

highlight the multi-faceted areas of applications that
exist for these kinds of networks. We presented a
way to efficiently infer bytes_in_count in an SDN
environment by capturing and analysing OpenFlow
Stats request and Reply messages between switches
and controller for both of Port and Meter features.
On a virtual OpenFlow testbed we displayed that our
method is accurate and provides updated link
utilization information through statistics Request
and Reply messages. According to collected
information in Floodlight controller, this design can
be used to flollow throughput in interswitch links
which in turn can be used to calculate other traffic
engineering related parameters such as available link
capacity on the links. This approach presented in
this study shows SDN/OpenFlow architecture
presents features that can be readily used to
implement fine grained traffic engineering policies
in actual networks that support SDN/OpenFlow.

REFERENCES
[1] S. Chuang, A. Goel, N. McKeown, and B.

Prabhkar, “Matching output queueing with a
combined input output queued switch,” IEEE
INFOCOM, New York, Mar. 1999.

[2] S. Chuang, S. Iyer, and N. McKeown, “Practical
algorithms for performance guarantees in buffered
crossbars,” IEEE INFOCOM,Miami,FL, Mar. 2005.

[3] OpenDaylight. Available online:
http://www.opendaylight.org/ (accessed on 22
February 2014).

[4] A. Tootoonchian, M. Ghobadi, and Y. Ganjali,
OpenTM: Traffic Matrix Estimator for OpenFlow
Networks. In PAM, 2010.

[5] L. Jose,M. Yu, and J. Rexford. Online measurement
of large traffic aggregates on commodity switches.
In USENIX Hot-ICE, 2011.

[6] Macapuna, C.A.B., Rothenberg, C.E., Magalhaes,
M.F., "In-Packet Bloom Filter-Based Data-Center

Networking with Distributed OpenFlow
Controllers, "IEEE 2010GLOBECOM Workshops,
pp.584– 588, 6–10 December 2010.

[7] Yu, Curtis, et al., “FlowSense: Monitoring Network
Utilization with Zero Measurement Cost.” Passive
and Active Measurement, Springer Berlin
Heidelberg, 2013.

[8] OpenFlow Switch Specification, Version 1.3.0.
2013. Available
online:https://www.opennetworking.org/images/stor
ies/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.3.0.pdf
(accessed on 27 Sept 2015)

[9] N. L. M. van Adrichem, C. Doerr, and F. A.
Kuipers, “OpenNetMon: Network monitoring in
OpenFlow Software-Defined Networks,” in NOMS
, pp. 1–8, 2014.

[10] Erickson, D. The Beacon OpenFlow Controller. In
Proceedings of the ACM Workshop on Hot Topics
in Software Defined Networks (HotSDN), Hong
Kong, China, 12–16 August 2013; pp. 13–18.

[11] Mininet. Available: http://mininet.org/.
[12] CPqD switch is available online:

https://github.com/TrafficLab/of13softswitch.
[13] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka,

and T. Turletti, “A Survey of Software-Defined
Networking: Past, Present, and Future of
Programmable Networks,” Communications
Surveys Tutorials, IEEE , vol. PP, no. 99, pp. 1–18,
2014.

[14] OpenFlow Switch Specification, Version 1.3.3.
2013. Available online:
https://www.opennetworking.org/images/stories/do
wnloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.3.3.pdf
(accessed on 27 Sept 2013)

[15] OpenFlow Switch Consortium and Others.
OpenFlow Switch Specification Version 1.3.0.
2012. Available online:
https://www.opennetworking.org/images/stories/do
wnloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.3.0.pdf
(accessed on 25 November 2014).

[16] F. Hu, ed. Network Innovation through OpenFlow
and SDN: Principles and Design, CRC Press, Boca
Raton, FL, 2014.

[17] Available online: www.iperf.fa

956

