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Abstract. We study differences in structural connectomes between typ-
ically developing and autism spectrum disorders individuals with ma-
chine learning techniques using connection weights and network metrics
as features. We build linear SVM classifier with accuracy score 0.64 and
report 16 features (seven connection weights and nine network node cen-
tralities) best distinguishing these two groups.

Keywords: brain networks, graph theory, machine learning, autism spec-
trum disorders

1 Introduction

Connectome graphs are discrete mathematical models which represent structural
or functional connections between anatomically distinct brain areas [1]. One
of the key goals of modern neuroscience is to link inter-individual connectome
differences and phenotypes. For example, psychiatric disorders have been found
to be associated with variation in connectomes [2], [3]. This is an important area
of studies because it not only provides insights into the nature of neurological
disorders but also has valuable practical applications in medical diagnostics.

To date diagnostic of psychiatric disorders based on neuroimaging data is far
from being accurate (for a recent review on this topic, see [4]). This is true for
many psychiatric conditions, including autism spectrum disorders considered in
our study. Most of the studies reported to date are based on relatively small sam-
ples and mostly incorporate the logics of group-based comparison without any
cross-validation procedures (for review of findings specific to autism spectrum
disorders, see [5], [6]).

In our study we use machine learning algorithms with cross-validation pro-
cedures to investigate structural differences between typically developing (TD)
and autism spectrum disorder (ASD) subjects. In each step we build our models
on train datasets and then validate them on unknown test data. This provides
an insight of how well our models will behave on newly coming observations,
while predictive power of the features based on whole-group analysis remains
unclear [7].
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Details on the dataset we used are provided in the next section. It was anal-
ysed by Rudie et al. [8], who mostly focused on functional connectivity matrices
and also tried to jointly analyse structural and functional networks. Their major
conclusions concerned associations between metrics obtained based on structural
and functional networks, which tended to differ in the ASD and TD groups.

Our analysis differs from the original study in several key aspects. First, we
only consider DTI-based structural networks and use an extensive list of local
and global graph metrics as potential predictors of group membership, while the
authors of the original study only analysed 6 global graph metrics. Second, we
normalize original connectivity matrices prior to any analysis, a step that seems
to be omitted in the original study. This gives us a possibility to compare topo-
logical properties of brain networks and eliminate differences due to physical
length of fibers and volumes of cortical regions. Finally, as mentioned above, we
use cross-validation techniques to test predictive power of observed structural
differences. Note that the original study did not involve machine learning tech-
niques and only reported group differences in graph metrics; hence, our results
are not directly comparable to those obtained by Rudie et al.[8].

2 Methods

2.1 Dataset

We use UCLA autism dataset publicly available for download at the UCLA
Multimodal Connectivity Database [9], [10]. The dataset includes DTI-based
connectivity matrices of 51 ASD subjects (6 females) and 43 TD subjects (7
females). Average age (age standard deviation) were 13.0 (2.8) for ASD group
and 13.1 (2.4) for TD group. To control for possible confounding effects, we
included both age and sex as features in all analyses. Details on participants
recruitment, DTI scans acquisition and construction of connectivity matrices
can be found in the paper by Rudie et al. [8]. In this section, we only focus on
some key aspects of the pipeline.

DTI scans were acquired on a Siemens 3T Trio. The DTI sequence consisted
of 32 scans with different diffusion-weighted directions (b=1000 s/mm2), three
scans with no diffusion sensitization at b=0, and six scans at b=50 s/mm2. An
in-plane voxel dimension was 2×2mm with 2-mm thick axial slices, and total scan
time was 8 min 1 s. Subjects with excessive motion artifacts were not included in
the final sample. Mean and maximum relative motion did not differ in ASD and
TD groups. Motion and eddy current correction was performed on the diffusion-
weighted images using ”eddy correct” in FMRIB’s Diffusion Toolbox.

Whole brain deterministic tractography was performed on voxelwise frac-
tional anisotropy (FA) values using the fiber assignment by continuous tracking
(FACT) algorithm [11] in Diffusion Toolkit [12]. Tractography was carried out
with relaxed constraints: maximum turn angle was set at 50o, and no FA cutoff
was applied. This means that the algorithm implied somewhat boosted likelihood
of detecting longer fibers between spatially distant areas. Fibers were smoothed
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using a spline filter; fibers shorter than 5 mm were excluded from connectivity
count.

As mentioned in the previous section, the choice of brain volume parcelling
scheme is an important step in connectivity matrix construction. It determines
the number and location of the vertices of brain networks and thus the structure
of the graph to be analysed. For this dataset, definition of nodes was somewhat
unusual for DTI-based networks that commonly use atlas-based or voxel-wise
parcellation approaches. Instead, connectivity matrices in this dataset were cre-
ated using parcellation scheme recently proposed by Power et al. [13] based on a
large meta-analysis of fMRI studies combined with whole brain functional con-
nectivity mapping. This approach produced 264 brain regions and thus 264×264
connectivity matrices. For the purposes of this study, we take this parcellation
scheme as is and do not discuss its potential benefits and caveats.

The number of streamlines connecting each pair of regions was used to set the
respective edge weights. Thus, the resulting adjacency matrices were symmetric
and weighted, with larger weights indicating more streamlines detected between
the respective brain regions. Following recommendations by Jones et al. [14] we
prefer not to use the term ’fiber count’ because the number of streamlines de-
tected by tractography algorithm does not necessarily correspond to the number
of actual white matter fibers.

2.2 Normalization

The original dataset includes non-normalized DTI connectivity matrices. Neither
[8] nor [9] report any normalization procedures applied to them. But number of
detected streamlines is known to vary from individual to individual and can
also be affected by fiber tract length, volume of cortical regions and other fac-
tors. Normalization of connectivity matrices is highly recommended prior to any
analyses (e.g., see [15] and [16]).

There is no consensus on how to normalize the streamline count. There seems
to be two major approaches to it. The first approach directly involves geometric
measures such as volume of the cortical regions or physical path lengths between
the regions [15], [16]. The second requires purely topological normalizations (e.g.,
see [17] and [18]). We used the latter approach in this study.

Topological normalizations themselves can differ in what effects they aim
to eliminate. In the simplest case, streamline count for each pair of regions is
normalized by the total number of streamlines in the entire brain, thus reduc-
ing variability among the connectivity matrices due to differences in the total
number of detected streamlines. More sophisticated procedures involve weight-
ing each edge by the arithmetic mean or geometric mean of the total number of
streamlines leaving its adjacent regions. Yet another approach aims to interpret
weights as probabilities of coming from one region to another and thus produces
non-symmetric matrices as a result of normalization.

For the data at hand, different topological normalizations did not result in
any meaningful differences in the outcomes. We only report results obtained
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based on the simplest topological normalization:

wij =
aij∑
ij aij

. (1)

In addition, this normalization is modified by dividing each normalized ma-
trix by its maximum value, as recommended by [18]. This further reduces differ-
ences between different connectivity matrices and allows comparison based on
purely topological characteristics.

2.3 Network features

Here we describe network features generated to implement supervised machine
learning techniques. Here and forth V is the set of all nodes in our network G
and n = |V | the number of nodes. E is the set of all edges in the network, and
m = |E| is number of them. Edges (i, j) have weights wij , which are normalized
(0 ≤ wij ≤ 1). aij is the connection status between nodes i and j. AW = wij

and A = aij are weighted and unweighted adjacency matrices.

Bag of edges. The simplest method to produce features is to treat matrix as
a vector. Each weighted edge acts as a feature, and no relationships between
them are taken into account. For 264×264 connectivity matrices this method
produces 34,716 features (because DTI connectivity matrices are symmetric with
zero diagonal).

Node-level local metrics. To capture properties of overall network structure,
we also compute local node-based and global graph metrics. We use weighted
metrics whenever possible and unweighted when there is no ready-made solution
(see Programming tools section). For each metric, we also compute mean across
all nodes, standard deviation, interquartile range and percentiles from zero to
100-th with step 10, thus producing 14 summary statistics of metric distribution,
which we also use as features for machine learning. For a discussion of possible
metrics in brain connectivity analysis we recommend [19].

Weighted degree

kWi =
∑
j∈V

wij , (2)

Average weighted neighbour degree

kWnn,i =

∑
j∈V wijk

W
j

kWi
. (3)

Closeness centrality. Inverse of average weighted distance to other nodes [20]

L−1i =
n− 1∑

j∈V,j 6=i d
W
ij

, (4)

where dWij is weighted shortest path length between nodes i and j.
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Betweenness centrality. Quantifies the number of times a node acts as a bridge
along the shortest path between two other nodes [20]. We use the weighted
version with shortest paths being computed for the weighted graph

bi =
2

(n− 1)(n− 2)

∑
h,j∈V

h 6=j,h 6=i,j 6=i

ρhj(i)

ρhj
, (5)

where ρhj is the number of weighted shortest paths between h and j, and ρhj(i)
is the number of weighted shortest paths between h and j that pass through i.

Eigenvector centrality. Gives high values to vertices that are connected to many
other well-connected vertices [21]

eci = vi, (6)

where v is eigenvector, corresponding to the largest eigenvalue of AW .

Weighted clustering coefficient. Represents how nodes in a graph tend to cluster
together [22]

ci =
1

k(i)(k(i)− 1)

∑
j,k

(wijwikwjk)1/3, (7)

where ki is unweighted degree of node i.

Number of triangles around node

ti =
1

2

∑
j,k∈V

aijaikajk. (8)

Global graph metrics. We also use the following global metrics to produce
features describing our networks. They are all unweighted because there were no
consistent ready-made solutions for their weighted version.

Network density. Quantifies how the number of edges differs from that in a
complete graph [22]

D =
2|E|

|V |(|V | − 1)
. (9)

Degree assortativity coefficient. Pearson correlation coefficient of unweighted
degree between pairs of connected nodes [23]

r =
|E|−1

∑
(i,j)∈E kikj −

[
|E|−1

∑
(i,j)∈E

1
2 (ki + kj)

]2
|E|−1

∑
(i,j)∈E

1
2 (ki + kj)−

[
|E|−1

∑
(i,j)∈E

1
2 (ki + kj)

]2 . (10)
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Maximal clique size. Number of vertices in maximal complete subgraph of net-
work.

Transitivity of the graph [22]

T =

∑
i∈E 2ti∑

i∈E ki(ki − 1)
. (11)

Diameter and radius of the graph

d = max max
i,j∈V

dmin
ij , r = min max

i,j∈V
dmin
ij , (12)

where dmin
ij is the shortest unweighted path length between nodes i and j.

2.4 Machine learning and cross-validation

We consider the two classes “typically developing” (TD) and “autism spectrum
disorder” (ASD) based on diagnosis, and classify individual brain networks based
on constructed features. We consider a combined set of edgewise and graph-based
metrics which give us (together with age and sex) a 94×36,670 matrix of features.
We also treat edgewise and graph-based sets of features separately, dealing with
94×34,718 and 94×1,954 matrices of features, respectively.

Constructed feature vectors have very high dimensionality which can lead
to situation when some of the features are correlated with diagnosis simply by
chance [7]. We deal with this problem using k-fold cross-validation and train and
test our classifier on different data. We use 10-fold cross-validation because it
provides a good trade-off between robustness to unobserved data and using as
much data as possible to train the classifier [24].

To reduce dimensionality of the data we use univariate feature selection based
on χ2 statistic between each feature and the diagnosis. To avoid model over-
fitting, we perform feature selection on each training set within cross-validation
separately, and obtain quality-of-fit statistics for unobserved test data. We repeat
this algorithm 100 times for each number of selected features in range from 2
to 40 and report mean accuracy and mean area under the ROC-curve for 100
runs. For the number of selected features that we consider optimal, we plot
ROC-curves based on 1,000 runs of 10-fold cross-validation procedure.

With this approach, different sets of features can be selected within each
fold. Although sometimes it boosts accuracy score, it also limits ones ability to
interpret the results. To deal with it, we use a hierarchical algorithm of cross-
validation, with leave-one-out procedure as an external cross-validation. In each
step, one observation is left aside, and 10-fold cross-validation with feature selec-
tion is run on the remaining 93 training observations. To fit classifier and predict
94th test observation, we use features which are selected above 0.9 threshold (in
9 or 10 folds). Again, we repeat this procedure 100 times. We report accuracy of
classification, precision and recall scores for each run and also extract features
that survived internal cross-validation threshold.
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For all algorithms we use Support Vector Machine (SVM) [25] classifier as
it exploits high discrimination possibility in high dimensional spaces. We report
results for SVM with linear kernel.

2.5 Programming tools

We perform coding in Python 3.4.3 (2.7.9 for second author) and IPython com-
mand shell 3.0.0 [26]. We make calculations with matrices, computation of graph
metrics and numerical analysis in NumPy 1.9.2 [27] and NetworkX 1.9.1 [28].
We implement machine learning algorithms in scikit-learn 0.15.2 [29]. Figures
are plotted in matplotlib 1.4.3 [30].

3 Results

3.1 Cross-validation with feature selection

Fig. 1 shows the results of 100 runs of 10-fold cross-validation procedure with
different number of features set to be selected on train subsets and validated
on test subsets. Accuracy scores and values of the area under the ROC-curve
are plotted on the same graph (recall, however, that due to different class sizes
our baseline chance accuracy was about 0.54).

Fig. 1. Results of feature selection within 10-fold cross-validation. From left to right:
combined matrix of features (edges and graph metrics), only edges used as features,
only graph metrics used as features

Plots for the combined matrix (edges and network metrics) are very similar
to those obtained for edge-based features only. Overall quality of prediction is
higher for the bag of edges model (and also the combined model) than for the
network metrics.

We obtain highest accuracy scores for different numbers of selected features
in case of edgewise and network metrics feature matrices. For the bag of edges
model and the combined matrix of features it is 23 and 22 features respectively,
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and for local and global graph metrics two maximums of the observed curves
correspond to 4 and 17 selected features.

To output the results, we run the algorithm 1,000 times with these numbers
of features selected within cross validation. The resulting mean ROC-curves
(based on interpolation of the original ROC-curves) are plotted in Fig. 2. In Fig.
3, we also show boxplots of ROC AUC values obtained across 1,000 runs of the
algorithm (averaged across 10 folds within each run).

Fig. 2. ROC-curves interpolated based on 1,000 runs of the cross-validation procedure.
From left to right: combined matrices (22 features selected), bag of edges (23 features
selected), and graph-based metrics (4 and 17 features selected, see the legend)

Fig. 3. Boxplots of the mean ROC AUC values across 1,000 runs of the algorithm

Quality of prediction is higher for models that include edge-based features
than for those based on network metrics only. There is no difference between the
two graph-metrics-based models. Regardless of the number of network metric
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features selected, quality of prediction is only slightly better than that of a
trivial classifier.

3.2 Robust feature selection and external leave-one-out
cross-validation

A disadvantage of the procedure described above is that different sets of features
can be selected in each step thus rendering the interpretation of results challeng-
ing. To overcome it, we select features within 10-fold cross-validation algorithm,
choose features that appear in 9 or 10 folds and validate this newly formed set
of features within an external leave-one-out procedure. For the internal cross-
validation, the number of features to be initially selected was set at 50. Different
numbers of features could survive our frequency-of-being-selected filter. For each
of 94 leave-one-out validations, we output the sets of features selected for vali-
dation in addition to the quality of classification scores. We repeated the entire
procedure 100 times.

Fig.4 shows overall accuracy, precision and recall of the models obtained
in 100 runs based on the combined matrix of features and on edge-based and
graph-based features.

Fig. 4. Leave-one-out accuracy, precision and recall values (boxplots represent results
obtained in 100 runs of the algorithm. Dashed line shows accuracy that would be
obtained by a trivial classifier, which assigns all observations to ASD class

Note that for edge-based features and combined feature matrices moderate
precision scores go together with relatively high recall scores. It means that
our model is correct in detecting true positives (ASD individuals), but tends to
produce false positives lowering the precision score. As we repeat the leave-one-
out validation procedure 100 times, we get 9400 of feature sets selected by the
algorithm (recall that randomness in our leave-one-out procedure comes from
the 10-fold cross-validation run on the bottom-level to select features). In Fig.
5, we output frequencies of features to be selected and the numbers of features
selected with the respective frequencies.
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Fig. 5. Frequencies of features selected in 100 runs of 10-fold cross-validation inside
leave-one-out procedure

Bag-of-edges features produce the model with the highest accuracy, although
different sets of features are selected for each train sample in cross-validation.
Only seven edges occur in more than 80 percent of train sets. Their respective
adjacent brain regions are listed in Table 1. Boxplots for these weighted edges for
ASD and TD groups are compared in Fig. 6 (left). For graph-based metrics, nine
features are selected in almost all train sets. They are listed in Table 1, and the
respective boxplots are shown in Fig. 6 (right). In case of combined edges and
metrics matrix χ2 feature selection always prefer edges to metrics, and exactly
the same edges are always selected as in the bag of edges model.

Table 1. Selected features and edges

Number Features and brain regions

1 Edge: Left Cingulate Gyrus anterior division, Right Frontal Pole
2 Edge: Right Pallidum, Right Parahippocampal Gyrus posterior division
3 Edge: Right Precentral Gyrus, Left Thalamus
4 Edge: Right Lateral Occipital Cortex superior division, Left Hippocampus
5 Edge: Right Precuneous Cortex, Right Parahippocampal Gyrus posterior division
6 Edge: Left Precuneous Cortex, Left Central Opercular Cortex
7 Edge: Left Precuneous Cortex, Right Occipital Fusiform Gyrus
8 Degree: Left Postcentral Gyrus
9 Betweenness centrality: Right Frontal Pole
10 Betweenness centrality: Right Frontal Orbital Cortex
11 Betweenness centrality: Right Insular Cortex
12 Betweenness centrality: Right Precentral Gyrus
13 Eigenvector centrality: Right Precuneous Cortex
14 Eigenvector centrality: Left Frontal Operculum Cortex
15 Eigenvector centrality: Left Frontal Pole
16 Number of triangles: Right Frontal Pole
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Fig. 6. Boxplots of the edges (left) and network metrics (right) which are most fre-
quently chosen by cross-validation techniques. The labels of features correspond to
those explained in Table 1. Network metrics are standardized

Finally, we plot 2D-projections of some best-discriminating features, with the
respective separating hyperplanes obtained by SVM fitted on the entire dataset
and only two features considered. These are shown in Fig. 7 (for edges) and Fig.
8 (for network metrics).

4 Discussion

The best obtained classifier is based solely on network connection weights and
has 0.64 accuracy score. It tends to overestimate the rate of positive diagnoses
thus producing high recall scores and somewhat lower precision. Models based
on network metrics and node centralities turned out to be only slightly better
than a trivial classifier.

Network features that contribute most to discrimination between the two
groups are seven edges and nine local node metrics (in the metrics-based model
only). Edge-based classification reveals presence of considered edges in TD group
and their absence in ASD group. Particular edge weights did not seem to be
important for the bag of edges model. Of nine network node metrics selected,
four were betweenness centralities and three were eigenvector centralities for
different nodes. The remaining two metrics characterized weighted degree of a
node and the number of triangles adjacent to another node.

There are several limitations of this study. First of all, sample size is quite
small for the results to be conclusive. Although the groups of ASD and TD
subjects are relatively large compared to similar studies published to date, it is
highly desirable to replicate the analyses on larger samples. This is primarily due
to high dimensionality of the task at hand. For example, analysis based on the
bag of edges involved tens of thousands of features with only 94 observations.
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Fig. 7. Scatter plots of edges best discriminating between ASD and TD individuals.
Separating hyperplane for each plot was fitted on the entire sample with only two
features considered. The labels of features correspond to those explained in Table 1.
Note that in some instances red dots overlay blue ones (this is the case in the plot on
the right where the two subgroups actually cannot be perfectly separated)

Fig. 8. Scatter plots of network metrics best discriminating between ASD and TD
individuals. Separating hyperplane for each plot was fitted on the entire sample with
only two features considered. The labels of features correspond to those explained in
Table 1.
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We employed statistical techniques of feature selection and cross-validation rec-
ommended for such situations, but larger sample size would be the best recipe
to improve the analysis.

Second, there could be other approaches to dimensionality reduction and
classification itself. Here, we only report results for χ2-based feature selection
which fails to account for any relations between the features. Lasso regulariza-
tion is another alternative to be considered. Even more importantly, comparing
results obtained by different classifiers is another work to be done in the future.

Third, there are certain methodological aspects of the data that should be
noted. For example, parcelling brain volume into nodes was quite unusual for
structural network analysis. DTI-based networks are commonly constructed on
atlas-based zones or their partitions. Thus, results obtained for this functional-
connectivity-based parcellation scheme need to be reproduced on networks with
alternative parcellation of brain zones.

Finally, we intentionally left aside any neurological interpretation of our find-
ings. Our study is purely exploratory in nature, and our analysis is blind to sub-
stantial meaning of the observed differences. We output the labels of brain zones
for which significant differences in local network characteristics between ASD
and TD groups are found, but do not go any further in interpreting our results.
At this point, we also do not attempt to compare our findings with other group
differences reported in literature on brain substrates of autism. This is another
important work to be done in the future, especially if similar findings survive
replication on larger samples.
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Learning in Python. Journal of Machine Learning Research, 12, 2825–2830 (2011)

30. Hunter, J. D. Matplotlib: A 2D graphics environment. Computing In Science En-
gineering 9, 3. 90–95 (2007)

777


