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Abstract. This work presents a novel algorithm for change point de-
tection, that can be applied for analysis of data of unknown nature.
It is based on likelihood-ratio test statistics, as its behaviour can be de-
scribed in terms of χ2-distribution even in case of model misspecification.
To discover change point in the quickest way, statistics is calculated in a
set of running windows of different scales. Algorithm is self-tuned: criti-
cal values are justified by data and calculated with multiplier bootstrap
procedure. To make the method more robust for outliers, the concept of
change-point patterns is presented.
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1 Introduction

The problem of change point detection has a wide range of applications, that
varies from life-critical to pure scientific ones. It appears each time one needs
to explore a set of random data and make a decision about homogeneity of its
structure. In other words, the problem can be stated as two following questions:
were there any structural changes in the nature of observed data? At which
moments, if so? These and similar questions arise in many areas of theoretical and
engineering research. For example, algorithms of change point detection are used
for identification and elimination of faults of aeroplane’s navigation system, so as
to perform better geolocation Nikiforov [2003]. There are many other examples of
real-world applications, such as analysis of stock markets Lavielle and Teyssiere
[2006] or anomaly detection in computer traffic Tartakovsky et al. [2006], Casas
et al. [2010]. The present work mainly focuses on the sequential or online change
point detection. In this case the data is aggregated from running random process.
Let Yτ be the observation at the current moment τ , τ > 1. The moment τ is
a change point, if stochastic properties of observed signal have undergone some
changes: {

Yt v IP1 t < τ,

Yt v IP2 t ≥ τ.

The goal is to find such structural breaks as soon as possible. The problem arises
across many scientific areas: quality control Lai [1995], cybersecurity Blazek
and Kim [2001], Wang et al. [2004], econometrics Spokoiny [2009], Mikosch and
Starica [2004], geodesy e.t.c. Shiryaev [1963] describes classical results in change
point detection theory. Overview of the state-of-art methods is presented in
Polunchenko and Tartakovsky [2011] or Shiryaev [2010]. The problem in hand
can be easily reduced to the problem of hypothesis testing in a rolling window.
Let t′ be a candidate for a change point and let (Yt′−h, ..., Yt′+h−1) be observed
data in the rolling window of size 2h, then

H0 : Yt v IP1, t′ − h ≤ t ≤ t′ + h− 1

H1 :

{
Yt v IP1, t′ − h ≤ t ≤ t′ − 1,

Yt v IP2, t′ ≤ t ≤ t′ + h− 1.

One popular solution is likelihood-ratio test (LRT). Its application for change
point detection goes back at least as far as Shewhart [1931]. This work presents
the concept of control chart for quality control. The work Quandt [1960] pro-
poses application of LRT for detection of breaks in linear regression model. It
was further developed by many authors, e.g. Kim and Siegmund [1989], Hac-
cou et al. [1987], Srivastava and Worsley [1986]. Liu et al. [2008], Zou et al.
[2007] investigate LRT for change point detection for nonparametric case. In
general, nonparametric approaches need more information for change point de-
tection than their parametric alternatives. Introduction of parametric assump-
tion: IP1, IP2 ∈ (IP (θ), θ ∈ Θ ⊆ IRp) allows to reduce average number of obser-
vations. The state-of-the-art review of parametric models based on LRT and its
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application to economics and bio-informatics are presented by Chen and Gupta
[2012]. The paper Gombay [2000] explores how LRT can be used for sequential
change point detection in case IP (θ) is exponential family. Lai [1995] proposes
’window-limited LRT schemes’: test statistics is calculated in rolling window.
This concept naturally expands to on-line change point detection. Many works
are dedicated to asymptotic behaviour of LRT, e.g. Jandhyala and Fotopoulos
[1999] obtains lower and upper bounds for distribution of asymptotic maximum
likelihood estimator. The work Kim [1994] provides a very detailed study of its
asymptotic behaviour in linear regression models. Similar results for change in
mean of a Gaussian process are in Fotopoulos et al. [2010]. As far as the authors
know, the most comprehensive study of the LRT behaviour is done by Fan et al.
[2001]. It shows that LRT is asymptotically χ2 distributed. The idea of the proof
is based on the Wilk’s phenomenon Wilks [1938], Boucheron and Massart [2011].
The aim of the present paper is to described the LRT behaviour in finite-sample
case using non-asymptotic Wilks and Fischer theorems Spokoiny [2012]. It is
shown that the distribution of LRT is similar to ordinary χ2 under H0. In case
non-homogeneous sample inside a rolling window, the systematic drift of LRT
appears. Thus, under H1 the test statistic behaves like non-central χ2 random
value. This drift is referred to as a change-point pattern. The result holds for
both correct and misspecified parametric models. The cornerstone of the new
change point detection procedure is the concept of change-point pattern. The
geometry of a pattern depends on a type of switch between distributions the
data obeys before and after a change respectively. Three examples are presented
at the Fig. 1. The triangle pattern appears in case of an abrupt switch from
IPθ∗1 to IPθ∗2 . A smooth transition between two regimes entails the trapezium
change-point pattern. And an inverted triangle pattern appears due to a change
in coefficients of linear regression. The control of a change-point pattern instead
of a single LRT-value allows to reduce false-alarm rate to zero.

Fig. 1. Type of change point and the geometry of change-point pattern
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The existence of change-point patterns is the corollary of the Theorem 2.
However, the description of their theoretical properties is beyond the scope of
the present work.

Any procedure of change point detection exploits the concept of ”memory”.
It is the number of observations to be analyzed to detect a change point. In-
troduction of multiscale approach provides automatic optimal choice of memory
parameter. The results are described in Section 3. This technique is popular,
e.g. Frick et al. [2014], Spokoiny [2009] and performs analysis of the data on dif-
ferent scales simultaneously. The procedure proposed below computes the test
statistics in rolling windows of different sizes and controls change-point pattern
at each level. The greater number of scales at which a change-point pattern is
detected, the more sure algorithm is, that there is a change point.

Under some assumptions on the frequency of change points provided in Sec-
tion 3, the methods is applied to the multiple change point problem. The survey
on existing models can be found in Chib [1998]. The last, but not at all the
least feature of the proposed algorithm is that critical values for test statistic
are computed in a data-driven way. The idea is to use the multiplier bootstrap
procedure Chernozhukov et al. [2013]. The work of Spokoiny and Zhilova [2014]
shows that it can be used for the construction of confides intervals even in case
of a misspecified parametric model. Despite the fact, that theoretical properties
of data-driven critical values are beyond the scope of this paper, the procedure
of computation is presented in Algorithm 3.

The paper is organized as follows. Section 2 presents the description of the
algorithm. Theoretical properties of the procedure are discussed in Section 3.
Section 4 compares the new algorithm with existing methods using simulated
data sets. It also illustrates the performance of the method on a real data set.

982



5

2 Algorithm

This section provides the description of the proposed algorithm. Let (IP (θ), θ ∈
Θ ⊆ Rp) be a local parametric assumption about the nature of data inside a
window (Yt−h, ..., Y(t+h−1)). Here and further we assume, that the observations
are independent and identically distributed. The generalised likelihood ratio test
is

Th(t) = sup
θ∈Θ

L(θ;Yt−h, ..., Yt−1) + sup
θ∈Θ

L(θ;Yt, ..., Yt+h−1)

− sup
θ∈Θ
{L(θ;Yt−h, ..., Yt−1) + L(θ;Yt, ..., Yt+h−1)},

where L(θ; ·) is a log-likelihood function. To control a change point pattern, the
procedure monitors 2h values of the LRT simultaneously:

Th(t) = (
√

2Th(t− h), ...,
√

2Th(t+ h− 1)).

The test statistics in hand is a convolution of Th(t) with a predefined change-
point pattern Ph ∈ IR2h.

T̂h(t) = 〈Th(t), Ph〉 .

Under online framework, the algorithm marks a time moment τ at a scale
h as a change point, if the test statistic T̂h(t) exceeds critical value z(h) at the
moment t = τ + h:

{τ : T̂h(τ + h) > z(h)}.

Under offline setting, τ is marked as a change point if

{τ = argmax
t∈{1,...,M}

∑
h∈H

whT̂h(t), ∃h ∈ H : T̂h(τ) > z(h)},

where M is the number of observations, and {wh}h∈H are weights for window
size preferences.

In both cases the procedure repeats itself simultaneously on different scales
H = {hi}. The greater element position in ordered sequence H with which τ
is marked as change point, the more sure algorithm is, that τ the true change
point is. The multiplicity correction introduced in Algorithm 3 allows to avoid
an increase in false-alarm rate with the growth of H size.

Algorithm 1, 2 summarises above ideas for sequential case and case with
preloaded fixed data. Here the current moment is supposed to be τ + 2hN − 2
and a candidate for the change point is τ . Designation (t1 : t2) means range of
natural values t1, t1 + 1, . . . , t2.

Algorithm 3 presents the procedure of calculation of a critical value zh for
a fixed window size 2h. Let Y = (Y1, ..., YM ) be a training set (the described
procedure is applicable only for independent data Y). Let weighted likelihood
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function be a convolution of independent likelihood components and a weight
vector (u1, . . . , uM ):

L[(θ;Y1, . . . , YM ) =

M∑
m=1

uml(θ, Ym), (Lb)

where {um}Mm=1 are i.i.d. and IEum = Varum = 1. Then bootstrapped gener-
alised likelihood ratio test is

T [h(t) = sup
θ∈Θ

L[(θ;Yt−h, . . . , Yt−1) + sup
θ∈Θ

L[(θ;Yt, . . . , Yt+h−1) (Tb)

− sup
θ∈Θ
{L[(θ;Yt−h, . . . , Yt−1) + L[(θ + θ̂12;Yt, . . . , Yt+h−1)},

θ̂12 = argmax
θ

L(θ;Yt, . . . , Yt+h−1)− argmax
θ

L(θ;Yt−h, . . . , Yt−1).

Parameter θ̂12 allows bootstrap calibration with corrected bias, which described
in remark 4 in Section 3.

Algorithm 3 use multiplicity correction for multiple hypothesis testing: Hh :
maxτ T̂[h(τ) < z(h) for each h. Let z(h, α) be α quantile of variable maxτ T̂[h(τ).
The probability that at least one hypothesis is false equals to

IP ({∃h : max
τ

T̂[h(τ)− z(h, α)) > 0}) = IP ({∃h : p-value(max
τ

T̂[h(τ)) < α}) ≥ α.

One may decrease above probability by confidence reduction:

IP ({∃h : p-value(max
τ

T̂[h(τ)) < α− α′}) = α.
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Qh(t) = 0 – change point signals;
H – window sizes set;
get z(h) by Algorithm 3;
foreach window position t do

foreach h do
add Th(t) to Th;

T̂h = 〈Th(t− h), Ph〉;
if T̂h > z(h) and
Q(1:h)(t− 2h : t) = 0 then

Qh(t) = 1;
end

end
if maxhQh(t) = 1 then

t is change point;
end

end
Algorithm 1: LRTOnline.

S – change points set; H – window
sizes set;
wj – window size weights;
function FindCP(Y1, . . . , YM ):
get z(h) by Algorithm 3;
foreach h do

foreach window position t do
compute Th(t);

end
foreach τ do

T̂h(τ) = 〈Th(τ), Ph〉;
end

end

τ = argmaxτ
∑
h∈H whT̂h(τ);

if ∃h : Th(τ) > z(h) then
add τ to S;
FindCP(Y1, . . . , Yτ );
FindCP(Yτ , . . . , YM );

end
Algorithm 2: LRTOffline.

Data: (Y1, . . . , YM ), h, Ph, S –
weights generation counts

Result: f [h – bootstrap distribution
of maximal convolution
inside the window

for s = 1 to S do
generate u = (u1, . . . , uM );
foreach window position t do

compute T [h(t);
end
foreach τ do

T̂[h(τ) = 〈T [h(τ), Ph〉;
end

add maxτ T̂[h(τ) to f [h;

end

Data: H = (h1, . . . , hN ), f [h, α –
confidence

Result: critical values z(h)
Multiplicity correction:
for s = 1 to S do

generate u = (u1, . . . , uM );
add
minh p-value(maxτ T̂[h(τ), f [h) to
empirical distribution IPf

end
find α′ from condition
IPf (minh p-value(·) < α− α′) = α;
foreach h in H do

z(h) = quantile(f [h, α− α′);
end

Algorithm 3: Critical values calibra-
tion
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3 Theoretical results

3.1. LRT statistic

This section presents main results that describe theoretical properties of the
likelihood-ratio statistics (LRT). They are essential for the proposed algorithm
of change point detection. Further assume that log-likelihood function L(θ) =
L(Y, θ) has rather precise approximation by its quadratic part in local region
Θ0(r) of θ∗, Θ0(r) ⊆ IRp, where

θ∗ = argmax
θ

IEL(θ), θ̂ = argmax
θ

L(θ)

and Θ0(r) = {‖D(θ − θ∗)‖ < r}. Spokoiny [2012] provides required conditions
for justified quadratic approximation and parameter concentration in the local
region. Approximation error involves the next variables for its estimation:

α(θ, θ0) = L(θ)− L(θ0)− (θ − θ0)T∇L(θ0) +
1

2
‖D(θ − θ0)‖2,

χ(θ, θ0) = D−1∇α(θ, θ0) = D−1(∇L(θ)−∇L(θ0)) +D(θ − θ0).

Let in region Θ0(r) with probability 1− e−x:

|α(θ, θ∗)|
‖D(θ − θ∗)‖

≤ ♦(r, x), ‖χ(θ, θ∗)‖ ≤ ♦(r, x), (A)

where ♦(r, x) = (δ(r) + 6v0zH(x)ω)r,

D2(θ) = −∇2IEL(θ), D = D(θ∗), (D)

‖D−1D2(θ)D−1 − Ip‖ ≤ δ(r), (dD)

∀λ ≤ g, γ1γ2 ∈ IRp : log IE exp

λ

ω

γT1 ∇2
o

L(θ)γ2
‖Dγ2‖‖Dγ2‖

 ≤ ν20λ
2

2
, (ED2)

zH(x) =
√
H +

√
2x+

g−2x+ 1

g
H, H = 6p.

Condition (dD) ensures quadratic approximation of IEL(θ) and (ED2) ensures

linear approximation of centered likelihood
o

L(θ) = L(θ)− IEL(θ).
Firstly, to provide a simple non-strict explanation of what kind of distribution

the main statistic Th is supposed to have, review Th as

Th = L(θ̂)− L(θ̂H0
), L(θ1, θ2) = L1(θ1) + L2(θ2),

L1 = L(Y1, . . . , Yh), L2 = L(Yh, . . . , Y2h),

where θ̂H0 is argmax of L under condition H0 : θ∗1 = θ∗2 . Then due to quadratic

approximation Th corresponds to Tailor equation with point θ̂:

Th ≈
1

2
‖D(θ̂ − θ̂H0)‖2.
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If θ̂ and θ̂H0
tend to be Normal and H0 is true then their difference are close to

a centered Normal variable. If H0 is false – the Normal variable will have mean
that is equal to D(θ∗ − θ∗H0

).
The next equations describes strict equation for LRT statistic distribution

in quadratic model case. Sum of two quadratic functions L1(θ) + L2(θ) is a

quadratic function with central point θ̂.

L(θ) = L1(θ) + L2(θ)

= L1(θ̂1) + L2(θ̂2)− 1

2
(θ − θ̂1)TD2

1(θ − θ̂1)− 1

2
(θ − θ̂2)TD2

2(θ − θ̂2)

= L(θ̂)− 1

2
(θ − θ̂)TD2(θ − θ̂),

θ̂ = D−2(D2
1 θ̂1 +D2

2 θ̂2), D2 = D2
1 +D2

2.

Th = L1(θ̂1) + L2(θ̂2)− L(θ̂)

=
1

2
(θ̂ − θ̂1)TD2

1(θ̂ − θ̂1) +
1

2
(θ̂ − θ̂2)TD2

2(θ̂ − θ̂2).

θ̂ − θ̂1 = D−2(D2
1 θ̂1 +D2

2 θ̂2)− θ̂1 = D−2D2
2(θ̂2 − θ̂1),

θ̂ − θ̂2 = D−2(D2
1 θ̂1 +D2

2 θ̂2)− θ̂2 = D−2D2
1(θ̂1 − θ̂2).

2Th = (θ̂2 − θ̂1)TΣ2(θ̂2 − θ̂1),

where

Σ2 = D2
2D
−2D2

1D
−2D2

2 +D2
1D
−2D2

2D
−2D2

1 = D2
1D
−2D2

2 ≈
1

4
D2, (S)

D2
1 = −∇2IEL(θ∗1), D2

2 = −∇2IEL(θ∗2), D1 ≈ D2.

In quadratic model following equations provides replacement of θ̂2, θ̂1 in the
equation for Th with regard to condition χ(θ, θ∗) = 0:

D1(θ̂1 − θ∗1) = ξ1 = D−11 ∇L(θ∗1), D2(θ̂2 − θ∗2) = ξ2 = D−12 ∇L(θ∗2).

The next theorem concludes these considerations to generalized result for non-
quadratic model.

Theorem 1. Assume condition (L*) and quadratic Laplace approximation (A)
of L1 and L2 are fulfilled with probability 1− 2e−x, additionally with probability
1− 2e−x

‖ξi‖ ≤ z(x), z2(x) = max
i
pBi

+ 6λBi
x,

Bi = D−1i Var(∇Li(θ∗))D−1i , pB = tr(B), λB = λmax(B). (B)

Then in the local region with probability 1− 8e−x

2Th = ‖ξ12 + θ∗12‖2 +O({r + z(x)}♦(r, x)),

where
ξ12 = Σ(D−12 ξ2 −D−11 ξ1), θ∗12 = Σ(θ∗2 − θ∗1).
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Remark 1. In increasing sample size n→∞ the stochastic component tends to
Normal distribution:

ξ12 → N (0, B1 +B2).

Remark 2. Both L1(θ̂) and L2(θ̂) should have an opportunity to be presented
in quadratic form in local regions Θ1(r) = {θ : ‖D1(θ − θ∗1)‖} and Θ2(r) =

{θ : ‖D2(θ − θ∗2)‖}. For the condition θ̂ ∈ Θ1(r) ∩ Θ2(r) the restriction of the
parameter θ∗ variability is required

‖D(θ∗1 − θ∗2)‖ ≤ r. (L*)

Proof of a similar statement (theorem 1) for statistic
√

2Th one could get
from condition (A). With probability 1− 2e−x∣∣∣∣Th(θ̂1, θ̂2)− 1

2
‖Σ(θ̂2 − θ̂1)‖2

∣∣∣∣ ≤ 2‖D1(θ̂1 − θ̂)‖♦(r, x) + 2‖D2(θ̂2 − θ̂)‖♦(r, x)

≤ 4‖Σ(θ̂2 − θ̂1)‖♦(r, x).

Inequality |a− b| ≤ |a2 − b2|/b, b > 0 converts the previous term to∣∣∣∣√2Th(θ̂1, θ̂2)− ‖Σ(θ̂2 − θ̂1)‖
∣∣∣∣ ≤ 8♦(r, x).

Replacement (θ̂1, θ̂2) with (D−11 ξ1 + θ∗1 , D
−1
2 ξ2 + θ∗2) results in∣∣∣‖Σ(θ̂2 − θ̂1)‖ − ‖ξ12 + θ∗12‖

∣∣∣
≤ ‖Σ(θ̂1 − θ∗1)−ΣD−11 ξ1‖+ ‖Σ(θ̂2 − θ∗2)−ΣD−12 ξ2‖ ≤ 2♦(r, x).

The next theorem summarizes the statements above.

Theorem 2. Assume condition (L*) and quadratic Laplace approximation (A)
with probability 1− 2e−x are fulfilled. Then with probability 1− 4e−x in the local
region Θ1(r) ∩Θ2(r) took place∣∣∣√2Th − ‖ξ12 + θ∗12‖

∣∣∣ ≤ 10♦(r, x).

where ξ12 and θ∗12 are defined in theorem 1.

Remark 3. The constant near ♦(r, x) could be decreased, expanding series of
L1(θ), L2(θ) and L(θ) in the local regions around θ∗1 , θ∗2 and θ∗ instead of MLE
values:

2Th = −‖ξ‖2 + ‖ξ1‖2 + ‖ξ2‖2 − 2ξT1 D1D
−2D2

2(θ∗2 − θ∗1) + 2ξT2 D2D
−2D2

1(θ∗2 − θ∗1)

+ ‖D1D
−2D2

2(θ∗2 − θ∗1)‖2 + ‖D2D
−2D2

1(θ∗2 − θ∗1)‖2 ± (2♦(r, x)r + 2δ(r)r2)

= −‖ξ‖2 + ‖ξ1‖2 + ‖ξ2‖2 + 2(D−12 ξ2 −D−11 ξ1)TΣ2(θ∗2 − θ∗1) + ‖Σ(θ∗2 − θ∗1)‖2

± (2♦(r, x)r + 2δ(r)r2).
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Referring to condition A, ‖D−1(D1ξ1 +D2ξ2)‖2 ± 2♦(r, x)z(x) replaces ‖ξ‖2.

−‖ξ‖2 + ‖ξ1‖2 + ‖ξ2‖2 = ‖Σ(D−12 ξ2 −D−11 ξ1)‖2 ± 2♦(r, x)z(x).

That leads to result∣∣∣∣2Th − ‖ξ12 + θ∗12‖2
∣∣∣∣ ≤ (4♦(r, x)r + 2δ(r)r2).

Remark 4. Weighted LRT statistic (Tb) has similar approximation:

2T [h ≈ ‖D(θ̂b − θ̂bH0
)‖2 = ‖ξ[12‖2.

where θ̂[H0
is argmax of L[ under condition H0 : θ̂2 − θ̂1 = θ̂12, which is true.

That’s why the mean of difference (θ̂b − θ̂bH0
) is zero.

3.2. Optimal window size

The change point detection algorithm described above has rather meaningful
parameter window size (h) that determines sample sizes on which MLE (θ̂1, θ̂2)
will be compared. One may find out the required sample size from condition

hKL(θ∗1 , θ
∗
2) > hKL(θ̂1, θ

∗
1) + hKL(θ̂2, θ

∗
2), (1)

which ensures that distance between distributions IP (θ∗1) and IP (θ∗2) is greater
than their fluctuations caused by error in θ∗i estimation. Wilks theorem (reg.
Spokoiny [2012]) gives upper approximation with probability 1− 10e−x

hKL(θ̂1, θ
∗
1) + hKL(θ̂2, θ

∗
2) ≤ 2r♦(r, x) +

‖ξ1‖2

2
+
‖ξ2‖2

2
,

where with probability 1− 4e−x

‖ξ1‖2

2
+
‖ξ2‖2

2
≤ z2(x) = pB + 6λBx, pB =

pB1
+ pB2

2
, λB =

λB1
+ λB2

2
.

In case with

r♦(r, x) =

√
C(pB + x)3

h
, h > C(pB + x),

lower bound for parameter change from initial condition 1 results in estimation

hKL(θ∗1 , θ
∗
2) > 3pB + (6λB + 2)x.

Optimal h is finite. Increasing a sample size one decreases an impact of stochastic
part of ‖ξ12 + θ∗12‖, since ‖θ∗12‖ grows. But at the same time ‖θ∗12‖ will not be
changed by window replacement when h→∞.

The previous estimation of h doesn’t take into account convolutions with
patterns. Next reasoning estimates h from comparison of pattern convolution
with statistic Th(i) with and without growing static term θ∗12(i), where i indicates
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sliding window position. Note that angle of ‖θ∗12(i)‖ growth decreases with h. The
optimal window size is the smallest one that is sufficient to overcome random
fluctuations in convolution of ‖ξ12(i) + θ∗12(i)‖ with linear function f(i) = i
(corresponds to half of triangle pattern). Define new variables

b = ‖θ∗12‖ =
√
hb0, bi =

i

h
b, i > 0, ξi = ξ12(i).

Optimal window size for online change point detection is to be derived from the
following inequality.

h∑
i=1

i‖ξi + bi‖ ≥
h∑
i=1

i

(
‖ξi‖+ 10♦(r, x)

)
.

Theorem 4.1 from paper Spokoiny and Zhilova [2013] ensures following inequality
with probability 1− 2e−x

‖ξi + bi‖ ≥
√
‖ξi‖2 + ‖bi‖2 − 2‖bi‖ − 2δ1(x) ≥

≥ ‖bi‖ − 2−
√

4 + 2δ1(x).

With probability 1 − 4e−x under condition that statement from theorem 2 is
true one comes to a final estimation of the minimal sufficient window size:

h ≥
9(2 +

√
4 + 2δ1(x) + z(x) + 10♦(r, x))2

4b20
∼ c1 + c2p

b20
.

Consequently smaller h, in case data size is sufficient, is more preferable and has
greater weight on offline mode. Due to b parameter is unknown in advance, the
proposed multiscale method executes change point detection with different scale
parameters h ∈ H.
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4 Experiments

4.1. Experiments with synthetic data

This section presents results of the comparison of the proposed algorithm
of change point detection (referred as LRTOnline or LRTOffline) with two
other methods: Bayesian online changepoint detection (BOCPD) Adams and
MacKay [2007] and cpt.meanvar(PELT,. . .) (RMeanVar) from RPa [2014]. The
first method is constructed for online inference, but so far as it returns CP loca-
tion with each CP signal, it is also applicable for offline testing scenario. The idea
of this method is predictive filtering: its forecasts a new data point using only the
information have been observed already, where the distribution family is fixed
(Normal for the tests in this paper). Bayesian inference calculates the length of
the observed data (from the last CP). The second algorithm also uses preliminary
specified model. Its design focuses into finding multiple changes in mean and
variance in Normally (another distributions also supported) distributed data.
The returned set of change points is the result of sequential testing H0 (existing
number of change points) against H1 (one extra change point) applying the like-
lihood ratio statistic of the whole data coupled with the penalty for CP count.
Originally the method has offline change point detection interface, but one could
adapt it for online case by buffering incoming data elements and clearing the
buffer when at least one CP have been observed in the buffered data. RMeanVar
performs better than well known method CUSUM due to synchronous changes
in both data parameters mean and variance. In total, each of these two algo-
rithms has modification in the way that allows one to use it in both online and
offline testing mode.

LRTOffline configuration:
window sizes (h1, . . . , hW ) = (10, 20, 40, 70); confidence for the upper bound of
convolution with pattern = 0.1; window weights (u1, . . . , uW ) = (1.0, 2.0, 0.5, 0.2).

LRTOnline configuration:
window sizes (h1, . . . , hW ) = (30, 50, 70); confidence = 0.1.

Quality of measurements uses three following metrics: Normalised Mutual
Information (NMI), Delay (average time interval in which CP have been detected
after it had taken place), Precision and Recall. The next equation defines NMI
measure of two partitions (X, Y ) of time range by change points

NMI(X,Y ) = 2
H(X) +H(Y )−H(X,Y )

H(X) +H(Y )
.

H(X) and H(X,Y ) and entropy functions. Higher NMI values (they are in
[0, 1]) correspond to better quality. Quality comparison in offline case apply
NMI measure, while for online mode involves Delay, Precision and Recall.

Synthetic test data have been generated for different values of difference
norm of the data distribution parameter. Such values are denoted as delta. Each
delta corresponds to 10 sampled data sequences over which one compute mea-
sure average. In online mode each data sequence could have one or none change
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points, in offline mode – two, one or none change points. The data has two dis-
tributions: Normal (N (θ(1), θ(2))) and Poisson (Po(θ)). Parametric assumption
for all methods is N (θ(1), θ(2)), so Poisson data corresponds to misspecification
scenario.
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Fig. 2. Offline mode. First data: N (θ(1), θ(2)), second data: Po(θ), delta = ‖θ∗12‖, data
size = 340, parametric assumption for all methods is N (θ(1), θ(2)), NMI – Normalized
Mutual Information between predicted and reference partitions of time interval with
change points, tests per delta = 10, change point per test = {0, 1, 2}.
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Fig. 3. Online mode. First row data: N (θ(1), θ(2)), second row data: Po(θ), delta =
‖θ∗12‖, data size = 340, PA for all methods is N (θ(1), θ(2)), tests per delta = 10, change
point per test = {0, 1}.

In the offline tests with Normal data all the methods achieves similar NMI
scores, nonetheless LRTOffline is more stable for decreasing strength of CP
(delta). In the tests with Poisson data (misspecification) RMeanVar has rel-
atively low quality. The online tests characterizes the proposed method (LR-
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TOnline) as more stable along different delta values what is accomplished by
multiscale heuristic.

The experiments reveal following meaningful properties of the proposed method
configuration:

1. Quality is sensitive to selection of time interval τ ∈ [t1, t2] for upper bounds

(z(h), h ∈ H) calibration of convolution maxτ∈[t1,t2] T̂[h(τ) in offline mode.
For example in data N (0, 1).sample(100) ∪ N (1, 2).sample(100) is preferable
to use only slice of 0 to 100 elements for calibration, because of lower Var ξ12.
Generally according to remark 1 from Section 3 one should run calibration
in the range with the lowest possible values of tr(B1 + B2). This improve-
ment additionally requires approximation for the convolution maximum in
expanding data ranges.

2. It is influenced to find out the minimal h sufficient for bootstrap usage.
Bootstrap measure used for z(h) calibration becomes closer to real measure
with increasing h. Small h improves Delay (which also predicted theoretically
in 3.2. Subsection) but makes unable to keep high level of Precision and
Recall in online mode.

4.2. Experiments with real data

Here data from 1972-75 Dow Jones Returns Adams and MacKay [2007] de-
scribes several major events with potential macroeconomic effects (the most
significant among them are the Watergate affair and the OPEC oil embargo).

Convolutions plot (T̂[h(τ) as function from τ) with its upper bounds z(h) on this
dataset appeared to be a nice illustration of multiscale detection importance:
CP near t = 325 is better perceptible when window size is equal to 30 and CP
near t = 600 has more perceptible convolution when window size is equal to 70.
Two plots presented below includes convolutions with Static and Fitted Pat-
terns, where one could remark better separability of convolution peaks in fitted
case.

4.3. Sources

Demo of the LRTOnline method is available by link
localcpdetector.shinyapps.io/localCP

Scala project with LRTOffline and LRTOnline methods could be cloned from
github.com/nazarblch/cpd
which also includes testing system for abrupt change points detection applica-
tions and generated data used in the experiments.

5 Conclusion

This paper presented new change point detection method that works in of-
fline and online modes. The method accounts properties of LRT statistic, which
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Fig. 4. Data: daily returns of the Dow Jones Industrial Average from July 3, 1972
to June 30, 1975. Left plot – convolution with static triangle pattern; right plot –
convolution with fitted triangle pattern. The time axis is in business days, conv 30 (50,
70) corresponds to pattern with window size 30 (50, 70), bound 30 (50, 70) corresponds
to convolution upper bound. Three reference CP are presented: the conviction of G.
Gordon Liddy and James W. McCord, Jr. on January 30, 1973 (t = 142); the beginning
of the OPEC embargo against the United States on October 19, 1973 (t = 325); the
resignation of President Nixon on August 9, 1974 (t = 548).

has shifted χ2-distribution. Bootstrap technique appeared to be rather effective
for LRT critical values calibration. Experiments and quality measurements con-
firm stability of the proposed algorithm in possibility to detect change points
with different significance. The introduced concept of patterns allows to reveal
different types of change point and filter regions with outliers.
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