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Abstract. The system of controlled time-inhomogeneous Markov chains
(MC) is considered. The principal problem is the “curse of dimension”
which appears here as the necessity of solving the system of ordinary dif-
ferential equations of high dimension. Moreover, even the development
of the system itself is a serious issue since these equations are linked
and the standard parallelization approach developed in existing soft-
ware packages are not very effective. Meanwhile, one can observe that
the minimization procedure needed for the right hand side of this sys-
tem may be easily parallelized since for each equation the minimization
procedure may be realized independently. As an example we consider
the management of linked dams under seasonal random inflows/outflows
and customers’ demands. The current state of each dam is the state of
continuous-time Markov chain corresponding to the water level. So the
state of the dams system is represented in tensor form. The connection
of Markov chains is due to the controlled flow between dams. The aim of
the control is to keep balance under the natural perturbation and at the
same time to satisfy the customers’ demands. The general approach to
the solution is based on the dynamic programming method which leads
to the solution of Bellman type equation in tensor form. This equation
may be reduced to the system of ordinary differential equations. Here
we suggested the automatic procedure of this system generation and an
approach to the minimization which may be realized for each state inde-
pendently.

Keywords: connected Markov chain, stochastic control, tensor, dynamic
programming

1 Introduction

The natural resource management and control in various areas such as forestry,
fisheries, pest control, water flow in hydrological systems and so on, may be

? This research was partially supported by Russian Foundation for Basic Research
grant 13-01-00406.
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treated as Markov decision processes (MDP). There exists extensive literature
on this topic [1], [2]. The controlled continuous time Markov chain (MC) model
approximates the continuous state space by discretized one where the control is
responsible for the transition intensity from one state to another. The advan-
tage of the continuous-time MDP with respect to the diffusion models is in the
relative simplicity for the solution of control problems. That is because the dy-
namic programming equation for MDP may be reduced to the system of ordinary
differential equation instead of nonlinear partial differential equation of high di-
mension in the case of diffusion model. However, the good approximation needs
the large number of states and thereby the large number of differential equations
which are weakly linked and do not admit simple parallelization. An attempts
to solve more or less serious problems with the aid of standard mathematical
packages shows [3] that the existing parallelization tools could improve the calcu-
lation speed in 3-4 times and is not applicable to the number of states more than
one hundred. Even the derivation of the system of these ordinary equations still
a big issue since each equation contains the minimization operation in the right-
hand side (RHS). The aim of this work is the development of the approach to the
automatic derivation of the RHS on the basis of martingal representation of the
MC. Here the connected MCs are considered so instead of vector representation
the tensor one is needed. The dynamic programming equation is presented in
tensor form and an effective numerical procedure for derivation of the equations
in the equivalent system of ordinary differential equations had been proposed.
For solution of this system one can use the next important observation so that
for minimization of its RHS one can minimize each equation separately by using
the minimization tool for problem of rather small dimension. It discovers a way
to the genuine parallelization of the numerical solution.

The model of three dams system is considered as an example, where controls
are responsible for pour from one dam into another if necessary either to pre-
vent overflow or to satisfy the customers demands in better way. Such models
had been considered earlier [3], [4], [5] and demonstrate the possibility to solve
rather complicated problems where it is necessary to keep balance and to satisfy
the customers’ demands with the aid of the water price controls and linkage
between dams. The analogous models are applicable to the data transmission
problems where buffers and incoming/outcoming packages may be considered in
the same framework of flows [6], [7], [8], [9] and the problem of keeping balance
is formulated as congestion avoidance.

The aim of this article is to develop the optimal control for MC of high
dimension. The principal computational difficulty is that the number of states
cannot be reduced and in reasonable case is about few thousands. The control
has to be defined for each state and time. Here an approach to the software
which admits the parallelization has been suggested, it presumes:

– develop the automatic generation of the system of dynamic programming
equations;

– realize the calculation of the minimum in RHS of the above system in parallel
way;
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– use the numerical solution of the system by Euler method with reasonable
time increment since the high accuracy is not necessary for such approxima-
tion;

– and finally to develop the data structure for the solution and controls.

2 Model of controllable connected Markov chain

Each of controllable Markov chain (numbered as ith) has N i possible states and
is described by the following stochastic differential equation [10]

Xi
t = Xi

0 +

t∫
0

Ai(s, u(s))Xi
sds+W i

t , (1)

where Xi
t ∈ Si = {e0, ..., eNi}, Xi

0 is the initial state of the ith Markov chain. The
(N i + 1 ×N i + 1) matrix Ai(t, u) is the generator of ith Markov chain, matrix
valued function Ai is assumed to be continuous on (t, u) ∈ [0, T ] × U, where
T < ∞ and U is a compact set in IRm. The process W i

t is a square integrable
martingale with bounded quadratic variation [10].

The general theory of controlled connected Markov chain is presented in [6],
[7], where the joint state of Markov chain X = {X1|X2|...|Xd} be described as
tensor product of vectors X = X1⊗X2⊗ ...⊗Xd, where Xi ∈ Si. All processes
are defined on the probability space {Ω,F ,P}.

Assumption 1. The (N i + 1×N i + 1) matrices Ai(t, u) with entries aik,l(t, u)
constitute a family of time-dependent generators, that is,

1. aik,l(t, u) ≥ 0, for k 6= l;

2. ail,l(t, u) = −
∑
k 6=l

aik,l(t, u);

3. the control parameter u ∈ U, where U is some compact set in complete
metric space and Ai(t, u) is continuous on [0, T ]× U .

4. For given u ∈ U and the initial distribution P(0) of X(0) the probability
column tensor P(t) = (P 1(t)|...|P d(t)), satisfies the Kolmogorov forward
equation

dP(t)

dt
= A(t, u)⊗P(t). (2)

where P i(t) is a vector of probability distribution of ith Markov chain. Here the
sign ⊗ means the tensor product of the tensor A consisting of matrices Ai and
P is the tensor consisting of the distributions of particular Markov chains.

We also make the following standard assumptions about the controls u(t).

Assumption 2. The set of admissible controls, u(·) is the set of FX
t -predictable

controls taking values in U.
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Remark 1. Assumption 2 ensures that if the number of jumps of the joint con-
nected Markov chain up to the current time t ∈ [0, T ] is Nt, τk is the time of the
kth jump and

(Xi)t0 = {(Xi
0, 0), (Xi

1, τ1), ..., (Xi
Nt
, τNt)}

is the set of states and jump times, then for τNt
≤ t < τNt+1

the controls
u(t) = u(t, (X)t0) are measurable with respect to t and (X)t0, where Xt

0 = (X1)t0⊗
(X2)t0 ⊗ . . .⊗ (Xd)t0 [6].

2.1 Performance criterion

Let f0(s, p(s),Xs) be the running cost function when the connected Markov
chain is in state Xs at time s ∈ [0, T ]. Then a general performance criterion to
be minimized has the tensor form

J [u(·),X(·)] = E

[
φ0(XT ) +

∫ T

0

f0(s, p(s),Xs)ds

]
. (3)

Here φ0(XT ) = φ0 ⊗ XT and f0(s, p(s),Xs) = f0(s, u(s)) ⊗ Xs with φ0 and
f0(s, u(s)) are the tensors of the order d.

Assumption 3. For each X ∈ S = S1 ⊗S2 ⊗ ...⊗Sd, the elements of f0(s, u))
are bounded below and continuous on [0, T ]× U.

2.2 Tensor form of the value function

The value function of connected Markov chain is a function which gives minimum
total cost for connected Markov chain starting at time t ∈ [0, T ] and state
Xt = X ∈ S. It has the form

V (t,X) = inf
u(·)

J [u(·),X(·)|Xt = X],

where
J [u(·),X(·)|Xt = X] =

E

φ0(XT ) +

T∫
t

f0(s, u(s),Xs)ds

∣∣∣∣∣Xt = X

 . (4)

We now represent V (t,X) as V (t,X) = φ(t) ⊗X, where φ(t) is a tensor of
the order d with measurable components.

2.3 Dynamic programming equation in tensor form

Further we generalize the approach (see [8], Thm. 2.8) to controlled MC in
the tensor form. Let φ̂(t) be of the same form as φ(t), and define the dynamic
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programming equation with respect to φ̂(t)

dφ̂(t)⊗X

dt
= −min

u∈U

{
φ̂(t)⊗

[
A1(t, u)X1 ⊗X2 ⊗ ...⊗Xd+

X1 ⊗A2(t, u)X2 ⊗ ...⊗Xd + . . .+

X1 ⊗X2 ⊗ ...⊗Ad(t, u)Xd

]
+ f0(t, u)⊗X

}
=

−min
u∈U

H(t, φ̂(t), u,X) = −H(t, φ̂,X)

(5)

with boundary condition φ̂(T ) = φ0 [8], [10], [11]. Since H(t, φ̂, u,X) is contin-

uous in (t, u) and affine in φ̂, for any (t,X) ∈ [0, T ] × S, H(t, φ̂,X) is Lipschitz

in φ̂.

Proposition 1. With Assumption 3 held equation (5) has a unique solution on
[0, T ].

Remark 2. If we now let X =
d⊗

k=1

e(ik), k = 1, ..., d, then we get a system of

ODE’s

dφ̂i1,i2,..,id(t)

dt
= −H

(
t, φ̂(t),

d⊗
k=1

e(ik)

)
,

i1 = 1, ..., N1, i2 = 1, ..., N2, ..., id = 1, ..., Nd.

(6)

The simple generalization of the Thm. 2.8 [8] gives the following characterization
of the optimal control.

Theorem 1. Let φ̂(t) be the solution of the system of equations (6), then for

each (t,X) ∈ [0, T ] × S there exists u0(t,X) ∈ U such that H(t, φ̂(t), u,X)
achieves a minimum at u0(t,X). Then

1. There exists an FX
t -predictable optimal control, û(t,Xt

0) such that V (t,X) =

J [û(·)
∣∣Xt = X] = φ̂(t)⊗X.

2. The optimal control can be chosen as Markovian, that is

û(t,Xt
0) = u0(t,Xt−) = argmin

u∈U
H(t, φ̂(t), u,Xt−).

3 Three dams system model

In this article we consider the case of three dams.
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Fig. 1. The topology of three dams system model in the example

3.1 The graph of the dams system

The graph of the dams system is shown on Fig. 1, some of them are linked and
accept the water transportation from one to another as shown by arrows. Each
pipeline accepts the transportation from mth dam to nth which provides the
intensity of transmission umn

ijk (t) depending on current time t and the current

state of dams system X1 = i,X2 = j,X3 = k. The intensity of transmission
satisfy the constraints

0 ≤ umn
ijk (t) ≤ umn

max,∀{i, j, k}. (7)

This form of constraints admits the water transportation in both side of pipeline.

Let us represent the level of a dam by discretizing the volume of the ith dam
into N i levels [12] and denote the level at any time t ∈ [0, T ], T < ∞, by an
integer valued random variable Li

t ∈ {0, ..., N i}. Each level is represented by the
set of unit vectors Si = {e0, e1, . . . , eNi} in RN+1, then one can define a random
vector Xt ∈ S on [0, T ] corresponding to this level at t ∈ [0, T ]. It means that
1l {Lt = i} = 1l {Xt = ei} where 1l {·} is an indicator function.

The use of controlled MC models for dams management had been considered
in [4] and for congestion avoidance control [9].

3.2 Inflows and outflows

Assume that the process of inflows to the dam can be approximated by a time-
inhomogeneous Poisson process, It. The natural inflow for ith dam is the result
of rain events which occur with intensity λi(t). The current inflow to the ith dam
is the result of the rain inflow and possible transportation from other dams.
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The semi-martingale representations of Iit , i = 1, 2, 3 are:

I1t =

∫ t

0

(λ1(s) + u21(s))1l{L1(s) < N1}ds+M1
t

I2t =

∫ t

0

(λ2(s) + u12(s) + u32(s))1l{L2(s) < N2}ds+M2
t

I3t =

∫ t

0

(λ3(s) + u23(s))1l{L3(s) < N3}ds+M3
t

(8)

where M i
t , i = 1, 2, 3 are a square-integrable martingales [10].

Outflow from each dam consists of natural losses due to evaporation, the
consumption of the dam users and possible transportation to other dams. The
natural losses of each dam are described by a general counting process with
intensity µi(t), i = 1, 2, 3. Customers’ demands for ith dam are described by a
general counting process with intensity wi(t), i = 1, 2, 3.

The outflow from ith dam is the counting process Oi
t which depends on the

current state of the dam. The semi-martingale representations of Oi
t are:

O1
t =

∫ t

0

(µ1(s) + w1(s) + u12(s))1l{L1(s) > 0}ds+M4
t

O2
t =

∫ t

0

(µ2(s) + w2(s) + u21(s) + u23(s))1l{L2(s) > 0}ds+M5
t

O3
t =

∫ t

0

(µ3(s) + w3(s) + u32(s))1l{L3(s) < N > 0}ds+M6
t

(9)

where M i
t , i = 4, 5, 6 are a square-integrable martingales.

The controls satisfy the constraints

0 ≤ u12i1,i2,i3(t) ≤ 4, 0 ≤ u21i1,i2,i3(t) ≤ 4,

0 ≤ u23i1,i2,i3(t) ≤ 2, 0 ≤ u32i1,i2,i3(t) ≤ 4 ∀t,∀{i1, i2, i3}.
(10)

The intesities of inflows, natural outflows as well as the customers demands
are choosen as follows:

λ1(t) = − cos (2π t) + 10, µ1(t) = sin (2π t+ 5/12π) + 3,
λ2(t) = −2 cos (2π t) + 14, µ2(t) = 2 sin (2π t+ 5/12π) + 6,
λ3(t) = −0.5 cos (2π t) + 6, µ3(t) = 0.5 sin (2π t+ 5/12π) + 2.

(11)

w1(t) = sin (2π t+ 1/4π) + 7,
w2(t) = 2 sin (2π t+ 1/4π) + 8,
w3(t) = 0.5 sin (2π t+ 1/4π) + 4.

(12)

Remark 3. As usual, we assume that It and Ot are processes whose jumps do
not occur at the same time. This implies that the mutual quadratic variation,
〈M i,M j〉t = 0, i 6= j.
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Specifically, we define X = X1 ⊗X2 ⊗X3, where Xi
t ∈ Si, i = 1, . . . , 3, t ∈

[0, T ], T < ∞, as a controlled jump Markov process with piecewise constant
right-continuous paths.

The corresponding generators of the MCs, that are Ai(t, u), have been defined
on the basis of processes Iit , O

i
t, i = 1, 2, 3 [8], [9]. For each state of the system

{i1, i2, i3} and time t ∈ [0, T ] it is necessary to find{
u12i1,i2,i3(t), u21i1,i2,i3(t), u23i1,i2,i3(t), u32i1,i2,i3(t)

}
. (13)

3.3 Criterion of optimization

The aim is to find out the controls (13) which provides the best balance be-
tween the natural inflows/outflows and the customers’ demands. The criteria
have the form of quadratic integral functionals which take into account the cur-
rent squared difference between the inflow and the outflow for each dam

f10 (t, u) =

(
λ1(t)− µ1(t)− w1(t)− u12i1,i2,i3(t) + u21i1,i2,i3(t)

)2

f20 (t, u) =

(
λ2(t)− µ2(t)− w2(t) + u12i1,i2,i3(t)− u21i1,i2,i3(t)

−u23i1,i2,i3(t) + u32i1,i2,i3(t))

)2

f30 (t, u) =

(
λ3(t)− µ3(t)− w3(t) + u23i1,i2,i3(t)− u32i1,i2,i3(t)

)2

(14)

3.4 Numeric procedure

To determine the control variables (13) one needs to solve the system of ordinary
differntial equations (5). Since the dimension of this system is large enough to
be implemented with the standard numerical procedures one can suggest the
following sequence of steps for solution of this system by Euler method, which
provides the possibility to balance between the number of calculations and the
accuracy:

1. define the equations of the RHS of (5) and substitute the functions λi(t), µi(t), wi(t)
from (11), (12);

2. solve system (5) in backward time by Euler method. For that use φi1,i2,i3(t)
found out on the preceding step of the integration (for initial step use the
terminal values φi1,i2,i3(T ). Thereby, define the RHS of (5) and minimise it
with respect to controls at time t (13), satisying the constraints (10);

3. find the minimum of the quadratic form for each state and store the controls,
by that the RHS of the system (5) be determined at t−∆t, where ∆t is the
step of Euler method;

4. then determine φi1,i2,i3(t−∆t);
5. repeat the procedure from step 2 until t = 0.
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Now the most cumbersome part of the procedure, that is the step 1 is realized.
Give an examle of automatically generated RHS of (5) for the state {6, 4, 2}.
Since the formula is large enough it is separated in two parts: Q1 and Q2, so
that the RHS is equal to Q1 +Q2.

Q1 =

{
− cos (2π t)− sin (2π t+ 5/12π)− sin (2π t+ 1/4π) +

u216,4,2(t)− u126,4,2(t)

}2

+{
− 2 cos (2π t)− 2 sin (2π t+ 5/12π)− 2 sin (2π t+ 1/4π) +

u126,4,2(t)− u216,4,2(t) + u326,4,2(t)− u236,4,2(t)

}2

+{
− 0.5 cos (2π t)− 0.5 sin (2π t+ 5/12π)− 0.5 sin (2π t+ 1/4π) +

u236,4,2(t)− u326,4,2(t)

}2

(15)

Q2 = φ5,4,2(t)

[
− cos (2π t) + 10 + u216,4,2(t)

]
+

φ6,3,2(t)

[
− 2 cos (2π t) + 14 + u126,4,2(t) + u326,4,2(t)

]
+

φ6,4,1(t)

[
− 0.5 cos (2π t) + 6 + u236,4,2(t)

]
+

φ6,4,2(t)

[
3.5 cos (2π t)− 60− 3.5 sin (2π t+ 5/12π)− 3.5 sin (2π t+ 1/4π)−

−2u216,4,2(t)− 2u126,4,2(t)− 2u326,4,2(t)− 2u236,4,2(t)

]
+

φ6,4,3(t)

[
0.5 sin (2π t+ 5/12π) + 6 + 0.5 sin (2π t+ 1/4π) + u326,4,2(t)

]
+

φ6,5,2(t)

[
2 sin (2π t+ 5/12π) + 14 + 2 sin (2π t+ 1/4π) + u216,4,2(t) + u236,4,2(t)

]
+

φ7,4,2(t)

[
sin (2π t+ 5/12π) + 10 + sin (2π t+ 1/4π) + u126,4,2(t)

]
(16)

For each t the quadratic form Q1 + Q2 must be minimized with respect to
variables (13), satisfying the constraints (10).
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3.5 Specific features of the problem

This problem has the following specific features which describe its parallelization
capabilities:

– the number of equations is equal to the product of the numbers of states for
each dam;

– generators of the MCs are the three-diagonal matrices, so one can use sparse
matrices to economize the memory;

– due to above property the tensor products in (5) consist of small number of
entries, therefore it make sense to use the sparse tensors;

– the running cost in the criterion f0(t, u) = f10 (t, u)⊗ f20 (t, u)⊗ f30 (t, u). So it
is not necessary to keep in the memory the full tensor f0(t, u)⊗X, and one
can calculate just one entry which is necessary for particular equation, this
permits to economize the computer resources as well;

– the first step of the procedure Section 3.4 might be performed in advance
and does not need the repetition until changes of parameters (11), (12);

– steps 2–4 admit parallelization with shared memory for storage of φi1,i2,i3(t)
and φi1,i2,i3(t − ∆t). To pass from t to t − ∆t one needs to complete the
calculation for all variables at t which need the synchronization of these
parallel processes;

– two sets of variables φi1,i2,i3(t) and φi1,i2,i3(t−∆t) must be stored in case of
using the check point mechanism. The set of controls (13) must be stored
for each time t ∈ [0, T ].

4 Conclusion

The article gives the statement of the connected Markov chain control problem
in tensor form. The procedure for numerical solution for the problem had been
suggested, the important feature of this procedure is that it allows the paral-
lelization. The most first cumbersome step of the procedure is realized for the
system of 3 dams, the detailed analysis of such systems is the matter of future
works.
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